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Abstract:

All-versus-all BLAST, which searches for homologous pairs of sequences in a database of proteins,
is used to identify potential orthologs, to find new protein families, and to provide rapid access
to these homology relationships. As DNA sequencing accelerates and data sets grow, all-versus-all
BLAST has become computationally demanding. We present FastBLAST, a heuristic replacement
for all-versus-all BLAST that enables research groups that do not have supercomputers to analyze
large protein sequence data sets. FastBLAST relies on alignments of proteins to known families,
obtained from tools such as PSI-BLAST and HMMer. FastBLAST avoids most of the work of
all-versus-all BLAST by taking advantage of these alignments and by clustering similar sequences.
FastBLAST runs in two stages: the first stage identifies additional families and aligns them, and
the second stage quickly identifies the homologs of a query sequence, based on the alignments of the
families, before generating pairwise alignments. On 6.53 million proteins from the non-redundant
Genbank database (“NR”), FastBLAST identifies new families 25 times faster than all-versus-all
BLAST. Once the first stage is completed, FastBLAST identifies homologs for the average query
in less than 5 seconds (8.6 times faster than BLAST) and gives nearly identical results. For hits
above 70 bits, FastBLAST identifies 98% of the top 3,250 hits per query. FastBLAST is open source
software and is available at http://microbesonline.org/fastblast.

Introduction

Protein BLAST (basic local alignment search tool (Altschul et al., 1997)) is often used to identify
homologs for every sequence in the database, which is also known as “all-versus-all” BLAST. The
resulting pairwise homologies are used to annotate protein sequences, to identify potential orthologs,
and to identify new protein families. Another reason to use all-versus-all BLAST is so that users do
not need to wait when they wish to view the BLAST results for a protein of interest: BLASTing a
single protein against Genbank can take several minutes.

Unfortunately, all-versus-all BLAST is becoming computationally intractable. Analyzing a single
metagenomics data set of 28.6 million protein sequences with all-versus-all BLAST required over 1
million hours of CPU time (Yooseph et al., 2007). A research group with a cluster of 100 CPUs
would have to wait over a year for the result. Because finding all pairs of homologous sequences in
a database of N sequences takes O(N?) time, this problem will be even more severe in the future.

The sheer size of the output from all-versus-all BLAST is also a problem, as this also grows with
square of the size of the database. We estimate that all-versus-all BLAST on the non-redundant
subset of Genbank (“NR”), which currently contains about 6.5 million proteins and 2.2 billion amino
acids, would generate 37 billion pairwise homology relationships and 1.8 terabytes of tab-delimited



output.

One way to reduce the computational time for BLAST is to cluster similar sequences together first,
as with CD-HIT (Li et al., 2002). CD-HIT uses a greedy approach to cluster unaligned sequences,
and quickly identifies similar sequences by counting the number of shared k-mers. If CD-HIT
compares two sequences and they share enough k-mers, it keeps the longer one as an “exemplar”
for the cluster, and it need not compare the shorter one to other sequences. Thus, CD-HIT takes
O(NM) time, where N is the number of sequences and M is the number of resulting clusters.

CD-HIT is orders of magnitude faster than BLAST for identifying sequences that are 65-99% iden-
tical. (CD-HIT can cluster at lower identity thresholds as well, but not as quickly.) As of July 2008,
clustering the 6.23 million known proteins at 50% (“uniref50”, ftp://ftp.ebi.ac.uk/pub/databases/
uniprot /uniref/uniref50) yields 1.99 million clusters. We estimate that computing these clusters
required over 10,000 CPU-hours (scaling by O(NM) from test runs or from the results of Suzek
et al. (2007)). Even after clustering, running all-versus-all BLAST on uniref50 would take another
~6,000 CPU-hours (data not shown).

Another approach is to compare the sequences to models of known families instead of to each other.
Each family is typically described by a position-specific PSI-BLAST matrix (Altschul et al., 1997;
Schaffer et al., 2001) or a hidden Markov model (HMM) (Durbin et al., 1998). PSI-BLAST profiles
and HMMs are available for many protein families (Mulder et al., 2007; Marchler-Bauer et al., 2003).

Comparing sequences to known families scales much better than all-versus-all BLAST: it takes
O(NF) time, where F' is the number of models (currently about 53,000 between InterPro and COG
combined). Traditional tools for HMM search, such as HMMer 2.3 (http://hmmer.janelia.org), are
about 50 times slower than BLAST or PSI-BLAST (data not shown). PSI-BLAST is much faster
because than HMMer because it uses an index of k-mers to find short matches, and it only considers
alignments around regions that contain two such short matches. HMMer 3 (due in late 2008) will
also use this type of heuristic and is expected to be about 200 times faster than HMMer 2, or
even faster than PSI-BLAST (http://hmmer.janelia.org). In the meantime, we use FastHMM to
quickly identify members of known families (http://microbesonline.org/fasthmm). FastHMM uses
PSI-BLAST with sensitive settings to find candidate members of a family and then uses HMMer 2
to select true hits and to align those candidates to the HMM. FastHMM is about 30 times faster
than HMMer 2.3 and the resulting hits cover 98% of the amino acids that the HMMer hits cover
(Supplementary Table 1).

The key limitation of the known families is that they are not complete: some proteins belong to
families that are not yet described by a PSI-BLAST profile or an HMM. There are also some families
that are so diverse that they are difficult to model accurately, and some members of these families
are likely to be missed by the models. In practice, about a third of sequenced proteins have BLAST
homologs that are not described by the families (see below). Thus, to find all of the homology
relationships, BLAST is still required.



Results

Our Approach

We have developed FastBLAST, a more scalable replacement for all-versus-all BLAST. FastBLAST
starts with members of known families and with a multiple sequence alignment for each family.
FastBLAST uses the known families and their alignments to avoid doing unnecessary work, and it
uses fast clustering to further reduce the amount of work.

The known families allow us to avoid work because they already capture most of the homology
relationships. Two genes that belong to the same family are homologous, and there is no need to
run BLAST to discover this. Conversely, most pairs of genes are not homologous, so we assume
that if two genes belong to different families, then there is no need to compare them. We will show
that this assumption works well in practice. Although the HMMSs are imperfect, if two homologous
regions are misclassified into different families by one source of models, they will usually be classified
as homologs by a model from another source or by one of the additional families that FastBLAST
creates.

FastBLAST runs in two stages (Figure 1). First, it identifies “ad hoc” families that capture homology
relationships that are missed by the known families. These ad hoc families are based on “seeds,” or
unassigned regions that do not belong to any known family. The members of an ad hoc family are
the homologs (from BLAST) of the seed. FastBLAST uses fast sequence clustering to identify these
ad hoc families and their members quickly and to reduce the number of seeds. In the first stage,
FastBLAST also creates multiple sequence alignments for the ad hoc families.

In the second stage, FastBLAST quickly finds the top homologs for a given gene by inspecting the
alignments for the families that the query belongs to (both known families and ad hoc families).
FastBLAST runs BLAST on just those top homologs instead of on the entire database. Thus,
FastBLAST produces the same bit scores and pairwise alignments that BLAST does, but if the
families or their alignments are misleading, then it may not identify all of the homologs that BLAST
identifies.

Notice that we compute “top” homologs, rather than all homologs. Like BLAST, FastBLAST
has a parameter that defines the number of homologs that are desired. However, unlike BLAST,
FastBLAST runs more quickly if fewer homologs are desired. We recommend limiting the number
of homologs identified to 1 per 2,000 sequences in the database: this should include all potential
orthologs and all sequences with well-conserved functions. More distant homology relationships
are better described using the domain families rather than with pairwise alignments. Our limit of
1/2,000 may not seem stringent, but some proteins are homologous to over 1/100 of all proteins
(e.g., gi 16121781 has 107,873 homologs at 45 bits or above, which represents about 2% of Genbank
NR).



Below, we describe FastBLAST in more detail, especially the key steps of identifying ad hoc families
and selecting the top homologs of a gene. We then report the results of testing FastBLAST on NR.

Identifying Families

FastBLAST begins with known families and their alignments. FastBLAST can use families from any
source that allows us to align the members to the family (e.g., HMMer or PSI-BLAST). In practice,
we use raw HMM hits, as identified by FastHMM, to the families in Gene3D, PANTHER, Pfam,
PIRSF, SMART, SUPERFAMILY, and TIGRFAMs (Pearl et al., 2005; Mi et al., 2005; Finn et al.,
2006; Wu et al., 2004; Letunic et al., 2006; Wilson et al., 2007; Selengut et al., 2007). We also use
PSI-BLAST hits to COGs (Tatusov et al., 2001; Marchler-Bauer et al., 2003). For each family in the
input, FastBLAST creates a multiple sequence alignment based on the profile-sequence alignments
from FastHMM or PSI-BLAST. Positions that match the same profile position are aligned to each
other, and positions that do not match the profile are removed. (In other words, insertions in the
sequences, relative to the profile, are trimmed from the alignment.)

To identify the remaining families, FastBLAST finds homologs for unassigned regions that do not
belong to any of the known families. The intuitive idea is to cluster the unassigned regions to
obtain sequences that are potential seeds for new families, to use BLAST to find homologs for the
seeds, and to create multiple sequence alignments for the resulting ad hoc families from the pairwise
alignments to the seeds. If the HMMs were perfect models of the families, then we would only need
to compare the seeds to other unassigned regions, but in practice, we need to compare the seeds to
members of known families as well. FastBLAST uses clustering to reduce the number of sequences
within the known families before it does this comparison.

The data flow of FastBLAST is shown in Figure 1. First, FastBLAST identifies unassigned regions
that do not belong to any of the known families.

Next, to identify redundant sequences in the unassigned regions, FastBLAST uses CD-HIT (Li et al.,
2002) and BLAST. FastBLAST runs CD-HIT in two passes, first to cluster at 90% identity (with
5-mers) and then to cluster at 65% identity (with 4-mers). FastBLAST runs all-versus-all BLAST
on the exemplars of the CD-HIT clusters and greedily clusters together sequences that are over 40%
identical (see Methods for details). The sequences that remain after BLAST-based clustering are
potential seeds for ad hoc families, and the BLAST hits (if any) of these seeds are members for
these ad hoc families.

To identify redundant subsequences among the regions that belong to known families, FastBLAST
uses a greedy approach to identify clusters of similar sequences. This method is similar to CD-HIT,
but instead of counting k-mers, FastBLAST estimates sequence identity from the multiple sequence
alignment. FastBLAST clusters together sequences whose aligned positions are over 33% identical
(see Methods for details). FastBLAST also chooses an exemplar from each cluster. If overlapping



regions of the same gene are exemplars for different families, then FastBLAST merges those regions.
This is helpful because the databases of known families are highly redundant and many families
overlap. For a given family, FastBLAST’s alignment-based reduction is over an order of magnitude
faster than CD-HIT and also gives a greater reduction (data not shown). Over all the families,
FastBLAST should be even faster because FastBLAST only does comparisons within each family
and need not compare members of different families to each other.

FastBLAST then uses BLAST to compare the non-redundant subset of unassigned regions (the
seeds) to the merged non-redundant members of known families. Once this is complete, FastBLAST
has homologs for the seeds from CD-HIT, from the non-redundant unassigned regions, and from
the merged non-redundant members of known families. Each unassigned region that has homologs
other than itself (either from BLAST or from CD-HIT) is considered to define an ad-hoc family.

FastBLAST estimates the members of each ad hoc family by collecting the members of the seed’s
cluster, the seed’s homologs, and the members of those homologs’ clusters. FastBLAST then uses
BLAST to compare each seed sequence to all of these potential members of the ad hoc family. This
verifies that the genes are homologous to the seed and also gives pairwise alignments to the seed.
Much like with the known families, FastBLAST uses these pairwise alignments to generate multiple
sequence alignments. The final output of the first stage of FastBLAST comprises alignments for
both known and ad-hoc families, the list of families for each gene, and indexes for rapid access to
the list of families for a gene or to the alignment for a family (see Methods).

Selecting Top Homologs

To identify the top homologs of a gene, FastBLAST relies on the known families, the ad-hoc families,
and the alignments. Naively, one could just select all potential homologs — genes that share a known
family or an ad-hoc family with the query gene — and use BLAST to create pairwise alignments and
select the top hits. This scheme works well for most genes, but for genes with very large numbers
of homologs, it takes a long time to compute all the pairwise alignments.

To reduce the number of potential homologs considered, FastBLAST uses a heuristic based on the
families” multiple sequence alignments. The assumption is that the top homologs of the gene should
be top homologs according to the alignments. The alignments are imperfect and many positions
have been removed, but we will show that this assumption works well in practice. FastBLAST
computes a BLAST-like alignment score for the pairwise alignments between the query and its
homologs that are implied by the families’ alignments, and it selects the top 2.5h homologs, where
h is the desired number of top homologs and 2.5 is an arbitrary safety factor.

Another complication is that some genes belong to many families with overlapping membership.
In particular, the SUPERFAMILY and Gene3D databases contain many HMMs with overlapping
specificity. The ad-hoc families are also likely to be redundant, as we only cluster the seeds to 40%.



Thus, to save time, FastBLAST considers only the top few families for each region based on the bit
scores of the hits (see Methods for details).

Once FastBLAST has selected the potential top homologs, it obtains their sequences from the
BLAST database and runs BLAST to compute pairwise alignments and bit scores.

Testing Fast BLAST on NR

To demonstrate that FastHMM and FastBLAST scale to large data sets, we ran them on the non-
redundant Genbank database (“NR”). As of May 15, 2008, NR contained 6.53 million sequences of
an average length of 342 amino acids, for a total of 2.23 billion amino acids. FastHMM identified
members of known families in 8,552 CPU-hours; the time for PSI-BLAST to find hits to COGs
was negligible, under 400 CPU-hours; and the first stage of FastBLAST took 5,509 CPU-hours.
Together, these jobs took about 8 days to complete on a computer cluster with 160-192 CPUs
available.

Most of the CPU time for the first stage of FastBLAST was in reducing the known families (~1,000
CPU-hours), reducing the unassigned regions (/1,500 CPU-hours), and comparing the potential
seeds to the reduced regions from known families (/2,300 CPU-hours). The third round of BLAST
(aligning the seeds to the expected members of the ad hoc families) took less than 300 CPU-hours.
The non-parallel steps took a total of 23 hours. The main bottlenecks were the two passes of CD-
HIT clustering on the unassigned regions, which took a total of 15 hours. Optimizing the parallel
version of CD-HIT might eliminate this bottleneck (we did not use the parallel version of CD-HIT
because it did not reduce the elapsed time.)

To compare the performance of FastBLAST to that of all-versus-all BLAST, we ran BLAST with
3% of NR as the query and NR as the database. This took 3,794 CPU-hours, so we estimate that
all-versus-all BLAST on NR would take 3,794/0.03 ~ 126,000 CPU-hours, or 23 times more work
than the first stage of FastBLAST. This comparison does not include the time for FastHMM and
PSI-BLAST to compare the database to the known families, but we think that this is justified
because the family homologies are of great value in themselves.

We can estimate how much less work FastBLAST does, as compared to all-versus-all BLAST,
from the size of the reduced forms of the NR database (Table 2). FastBLAST uses BLAST to
compare the unassigned regions, clustered at 65%, to each other (14.1% - 14.1% = 2.0% of the
work of all-versus all BLAST). FastBLAST then compares the BLAST-clustered unassigned regions
to the clustered/merged representatives of known families (11.3% - 31.3% = 3.5% of the work of
all-versus-all BLAST). The total work is 5.5%, so we would expect FastBLAST to be 18-fold faster
(not considering the additional overhead of finding clusters, etc.). We believe that FastBLAST
outperforms this theoretical speedup because there are relatively few significant alignments to find
once the known families and the closely related sequences have been removed. FastBLAST produces



only 17.8 million hits during the reduced BLAST runs, and 17.4 million total entries in the ad-hoc
families, while all-versus-all BLAST would produce 37.1 billion hits. As the databases become larger
and more redundant, the relative speed of FastBLAST should increase further, because the number
of clusters should grow more slowly than the total database size.

The first stage of FastBLAST was much faster than using CD-HIT to reduce the data set (we
estimate that CD-HIT would take tens of thousands of CPU-hours) and about as fast as running
all-versus-all BLAST on a reduced data set (we estimate that all-versus-all BLAST on uniref50
would take 6,000 CPU-hours). FastBLAST is faster than running CD-HIT on the entire data set
because it does not compare sequences from different families to each other and because it uses a
faster method to cluster sequences within a family.

To test the second stage of FastBLAST, we used both FastBLAST and BLAST to identify the
top 3,250 hits for 2,000 randomly selected members of NR. (3,250 is 1/2,000 of the genes in NR.)
BLAST took 40.8 seconds per query, while FastBLAST took 4.74 seconds per query, or 8.6 times
faster. We believe that this is fast enough for interactive use (instead of pre-computing BLAST hits
for every query). Among hits with scores of at least 70 bits, FastBLAST found 97.9% of the hits
that BLAST found. As shown in Figure 3, FastBLAST correctly identified the top hit for every
query (if the query had any homologs) and identified all 3,250 top homologs for all but 10.8% of the
queries. For most of the remaining queries, the missed hits are weak or far down in the list. Thus,
we doubt that the missed hits would be orthologs or would be useful for annotating the query’s
function.

If we did not use the ad-hoc families to select potential homologs (e.g., did not perform the first
stage of FastBLAST) then the results would be dramatically worse: 33.4% of queries would have
missing hits and 12.7% of queries would miss their top hit. This illustrates that although the known
families capture the majority of the homology relationships, there are many additional relationships
that are only captured by the ad-hoc families.

We examined in more detail the four queries for which FastBLAST missed a hit that was within the
top 10 hits and over 100 bits. These queries and their worst missed hit are listed in Supplementary
Note 1. One of the top hits would have been missed by other approaches to reduce the work
of BLAST by clustering: a hit from A to B was missed because we clustered B with C, and B
and C are 41% identical over the relevant region, and yet A does not hit C. For another top
hit, the homologous regions identified by BLAST are repeats of VxSxxHGT. The two repeats have
expanded independently, so we are not even sure if the sequences are truly homologous, even though
the alignment score is 160 bits. The remaining two cases were relatively weak hits (<108 bits) that
were not captured by the alignments to known families. Improvements to the HMMs might eliminate
these misses.



Discussion

Future Work
FastBLAST Features

The major missing features from FastBLAST are incremental updates — right now, adding new
sequences to the database requires rerunning the entire analysis — and identifying homologs for
queries that are not in the database. It should be straightforward to update the ad-hoc families
in the first stage of FastBLAST. Indeed, one of the underlying tools, CD-HIT, already supports
incremental updates.

To use a new protein sequence as a query, we would need to compare it to the known and ad-hoc
families. Comparing a sequence to the ad-hoc families is straightforward (e.g., BLAST against the
seeds of the ad-hoc families). We have experimented with using reverse PSI-BLAST and HMMer
to place a single sequence into known families, but the performance has been disappointing. With
the expected performance gains from HMMer 3, this approach may become more attractive.

For gene-finding and for annotating metagenomics data, it is desirable to use nucleotide sequences
as queries, as in blastx (Gish and States, 1993). Significant speed-ups over blastx might be achieved
by comparing the six-frame translation of the query to the known families (e.g., with the nucleotide
mode of reverse PSI-BLAST) and then masking out regions that have strong hits to a known family
(e.g., analyzing those regions in only one frame).

Performance Improvements

It may be possible to speed up the second stage of FastBLAST significantly. Identifying potential
homologs by inspecting the alignments of the families takes an average of only 0.8 of the 4.7 seconds
per query. Most of the time is spent retrieving the sequences of the candidate homologs and aligning
them with BLAST. Retrieval time could be greatly reduced by using an in-memory database instead
of using fastacmd to retrieve them from a BLAST database. The time to align the homologs to
the query might be reduced by using the alignments implied by the families as a starting point to
search for local alignments, instead of using BLAST to realign the homologs to the query.

In the first stage of FastBLAST, it should be possible to further reduce the members of known fam-
ilies. On NR, the clusters from known families are somewhat redundant because cluster exemplars
are chosen separately for each family, and the families themselves are redundant. Because similar
exemplars will be members of each others’ clusters, it may be possible to identify these redundancies
efficiently. However, comparing the potential seeds to the known families was only 45% of the CPU
time for the first stage, so further reductions of the known families would not yield a dramatic



performance improvement.

A more promising approach to speeding up the first stage might be to improve the models of known
families. Many of the seeds are probably unrecognized members of known families: about a third
of the regions that are members of ad hoc families are covered by known families as well. Devising
PSI-BLAST profiles for the larger of the ad hoc families might also improve coverage: about half of
the hits to ad hoc families are from families with over 100 members, and these larger ad hoc families
amount to only ~27,000 seeds. Identifying homologs for these seeds would take around 300 CPU-
hours and would reduce the uncovered regions by around 25%, which should give a corresponding
reduction in effort during the first stage (=~1,400 CPU-hours of savings). FastBLAST would also
need to reduce these additional families, but the CPU time would be negligible, as these additional
families have an average of only 325 members.

Orthologs

Besides functional annotation, a major use of BLAST hits is to identify potential orthologs. Or-
thologs are usually identified from bidirectional best BLAST hits, which requires doing all-versus-all
BLAST. Although the resulting orthologs are often spurious (Koski and Golding, 2001; Price et al.,
2007), more careful clustering-based analyses of the BLAST hits yield better results (Remm et al.,
2001; Dehal and Boore, 2006). Nevertheless, all-versus-all BLAST will not scale to thousands of
genomes, because both the CPU time and the disk space required grow quadratically with the
number of genomes.

Instead, we recommend building a phylogenetic tree for every family (including the ad-hoc families),
and then using the trees to identify potential orthologs and to propagate annotations (e.g., (Zmasek
and Eddy, 2002)). Although some families now have over 100,000 members, trees of this size can
be constructed in a few hours of CPU time (http://www.microbesonline.org/fasttree). A potential
challenge is to reconcile the results from multiple families: the average gene in NR belongs to 33
known families and 2.7 ad-hoc families.

Conclusions

We have shown that FastBLAST scales to databases with millions of proteins. The first stage
of FastBLAST identifies additional families over 20 times faster than all-versus-all BLAST. These
additional families should be useful for improving the databases of sequence families, either to
suggest new families to add or, if the ad-hoc family overlaps with a known family, to improve the
model of the family.

The second stage of FastBLAST identifies homologs for the average protein in NR in an average of
five seconds, which supports rapid browsing of the sequence databases and eliminates the need to



pre-compute BLAST hits. Although FastBLAST misses some of the homologies that are found by
traditional BLAST, these tend to be weak or low-ranking hits. In many applications, these misses
will not matter. Furthermore, FastBLAST finds most of the homologies that are not represented in
the protein family databases. As the family databases improve, the sensitivity of FastBLAST and
its speed relative to that of BLAST should also improve.

In combination with performance improvements to HMM search (e.g., FastHMM or HMMer 3) and
with scalable methods for constructing phylogenetic trees (e.g., FastTree), FastBLAST enables a
wide variety of analyses on large protein sequence databases, such as identifying orthologs, studying
evolutionary histories, and predicting protein functions. All of these tools run in less than O(N?)
time, and so it should continue to be feasible to run these analyses on a modest-sized computer
cluster, despite the rapid growth of the sequence databases.

Source code for FastHMM and FastBLAST and results for the May 15 2008 release of NR are
available at http://microbesonline.org/fastblast. FastBLAST is also being incorporated into the
MicrobesOnline web site.

Materials and Methods

Fast BLAST implementation

FastBLAST is mostly implemented in Perl. Two performance-critical steps are implemented in C:
clustering the sequences in a family’s alignment and identifying top hits to a gene given a family’s
alignment. FastBLAST requires about as much memory as the size of the database (about 2 GB
for NR). During the first stage of BLAST, we use UNIX sort to avoid using a database or loading
large data sets into memory. For the second stage of FastBLAST, which requires quick access
to the alignment for a family and the families for a gene, FastBLAST uses BerkeleyDB, a light-
weight open-source database, to store the indexes (http://www.oracle.com/technology /products/
berkeley-db).

The first stage of FastBLAST is highly parallel and uses SunGridEngine’s gmake, a variant of GNU
make, to coordinate the execution of the jobs. If your compute cluster does not support parallel
make, you can still use GNU make to generate lists of independent commands at each step.

FastBLAST reduction

Here we give technical details of the reduction steps. When identifying unassigned regions, Fast-
BLAST ignores unassigned stretches of < 30 amino acids, as these short stretches are of limited use
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for finding homologs.

When using BLAST to cluster the unassigned regions, FastBLAST examines the results of all-
versus-all BLAST (in arbitrary order). If the subject is over 40% identical to the query and the
alignment covers at least 80% of the subject, then the subject is clustered with the query, and
any homology relations involving the subject will be ignored. To ensure that a sequence that has
homologs is not removed, FastBLAST keeps track of which sequences have been removed due to
which exemplars. For example, if B is clustered with A, and then A is clustered with C, FastBLAST
checks that B is a homolog of C before ignoring A and its homologs.

When clustering sequences within a family’s alignment, FastBLAST analyzes the sequences with
the fewest gaps first, and always uses the longest (fewest-gaps) sequence as the exemplar. (This
is analogous to CD-HIT analyzing the longest sequences first.) When FastBLAST compares a
potential cluster member to an exemplar, it ignores positions that are gaps in both sequences or
just in the potential member (these can be thought of as truncations). Positions that are gaps in
the exemplar but not in the potential cluster member are counted as differences. The member is
assigned to the cluster if the two sequences are over 33% identical. To eliminate problems due to
domain shuffling, FastBLAST also requires that both the N- and C-terminal 40 amino acids of the
aligned regions be at least 30% identical.

Selecting top homologs

To select candidates for the top homologs for a query, FastBLAST examines alignments for the
query’s families. However, to save time, FastBLAST does not examine every family’s alignment.
FastBLAST uses all hits from PFam, TIGRFAMs, SMART, and PIRSF, and the best hit from
COG. FastBLAST adds other hits (best bit score first) until it reaches two hits to known families
per region. Similarly, FastBLAST uses up to two hits to ad-hoc families per region. FastBLAST
considers two hits to be potentially redundant if they overlap by more than 50%.

Identifying known families with FastHMM

To force PSI-BLAST to find very weak homologs, FastHMM uses blastpgp with the options “-z
1e8 -Y 1e8 -e 10 -v 1000000 -b 1000000.” The -Y option reduces the search space size and hence
PSI-BLAST will try to extend pairs of very weak hits. After identifying candidate members of
families with PSI-BLAST, FastHMM uses fastacmd to extract the full gene sequences and HMMer’s
hmmsearch to validate the hits. FastHMM uses the -Z option to scale the E-values up by the number
of families within each database. FastHMM’s thresholds are similar to those of InterProScan: for
Pfam, the gathering cutoff defined by the curators; for TIGRFAMs, the trusted cutoff; for SMART,
per-protein £ < 2.04 - 107%; for GENE3D and PANTHER, E < 0.001; for SUPERFAMILY and
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PIRSF, E < 0.02. For some families, blastpgp has poor sensitivity, so FastHMM simply runs
hmmsearch against all sequences.

To find regions that are homologous to COGs, we used reverse PSI-BLAST with an E-value cutoff
of 1075,

Computers

We ran FastHMM and the first stage of FastBLAST on a cluster with 48 nodes and 192 CPUs.
Each node has two dual-core 2.2 GHz Opteron CPUs and 8-16 GB of RAM. We also ran HMMer
on 3% of NR and BLASTed 3% of NR versus NR on this cluster.

We ran the second stage of FastBLAST, and the corresponding BLAST runs of those queries against
NR, on a computer with a 2.4 GHz Intel Q6600 quad-core CPU and 8 GB of RAM. Both runs used
a single thread of execution. We did not use the cluster because the nodes have only 60 GB of local
disk space available, and the FastBLAST database for NR requires 79 GB (mostly for the alignments
of the families). Because many of the family alignments are quite large (tens of megabytes), running
these queries in parallel on the cluster would have overwhelmed the cluster’s file server.

Versions of protein families and of software

We used NCBI BLAST version 2.2.17, HMMer 2.3.2, and CD-HIT 2007. We used COG from Oct.
2006, Pfam version 20.0, TIGRFAM version 6.0, SMART 06_07_2006, Panther version 6.0, PIRSF
from Dec. 7 2006, SUPERFAMILY version 1.69, and Gene3D from Dec. 11 2006.

Settings for BLAST

We ran BLAST with composition-based statistics (the default for version 2.2.17), an effective
database size of 10®, an E-value cutoff of 0.001 (corresponding to a minimum alignment score
of 42 bits), and an unlimited number of hits. We masked repetitive sequences for look-up but not
for alignment (-F “m S”).
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Table 1: FastBLAST reduction of NR.

Data set Sequences | Amino acids | % of a.a. Hits
All 6.53 - 10° 2.23 - 10" 100.0% —
Known families — 1.72 - 107 77.2% | 214.7-10°
Clustered at 33% and merged 2.28 - 10° 0.70 - 10Y 31.3% -
Unassigned 2.93-10° 0.48 - 107 21.4% -
CD-HIT at 90% 2.20 - 10° 0.37 - 107 16.6% -
CD-HIT at 65% 1.86 - 10° 0.32-10Y 14.1% -~
BLAST clustered at 40% 1.49 - 10° 0.25 - 107 11.3% -~
Ad-hoc families 0.65 - 10Y 29.2% | 17.4-10°
Total families — 2.13-10° 95.7% | 232.1-10°

Figure 1: Overview of FastBLAST.

Stage 1: Identify ad-hoc families and align them to their seed sequences

BLAST
cp-HiT  Seduence Seeds for
- Unassigned | & cluster "
Alignments _ - pp Clustersnot — — , ad-hoc families,
of known families regions from known some members

families
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Sequence clusters

Seeds' homologs

Cluster within each Merge  from known families from known families

family by its alignment overlaps
Add members
from clusters

Seeds with potential homologs

BLAST seeds
vs. members

Alignments of ad-hoc families

Stage 2: Identify homologs of a query gene and align them to the query

Closest ~8,000

Query's —p > .
Y homologs from BLAST hits
families . i BLAST
families' alignments
vs. query
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Figure 2: FastBLAST misses mostly low-ranking hits and/or weak hits. We show the cumulative
proportion of queries that have a miss within the top n hits. Note the log-scale for the x axis. The highest
proportion is 10.8% because FastBLAST identified all of the top 3,250 homologs at 70 bits or greater for
the other 89.2% of queries. We also show results if only higher-scoring hits are considered.

—— >=70 bits
- = >=100 bits
>=130 bits

Cumulative Proportion

0.00 0.02 0.04 0.06 0.08 0.10

Rank of Highest—-Scoring BLAST Hit Missed by FastBLAST

Supplementary Table 1: Comparison of FastHMM to HMMer 2.3 on 3% of NR. For each
database of HMMs, we report the proportion of amino acids that are covered by the raw hits from hmmsearch
2.3.2 or from FastHMM. The coverage ratio is the fraction of amino acids covered by HMMer that are
covered by FastHMM. We also show the proportion of raw hits or of family assignments that FastHMM
finds (the sensitivity) and the total CPU time for both methods in hours. Family assignments are similar
to InterProScan assignments. Roughly speaking, they keep for each region in the sequence the best hit
within that database of HMMs.

Coverage Sensitivity CPU Time (hr)
Database HMMer | FastHMM | Ratio Raw | Assign. | HMMer | FastHMM
Gene3D 37.34% 37.24% | 99.73% || 98.89% | 99.91% 721 12
PANTHER 42.67% 41.12% | 96.35% | 97.05% | 94.98% 1,947 86
Pfam 50.42% 50.20% | 99.56% || 98.02% | 99.41% 2,447 69
PIRSF 17.80% 15.30% | 85.95% || 96.21% | 99.99% 365 16
SMART 9.92% 9.91% | 99.90% || 99.91% | 99.92% 58 5
SUPERFAMILY 54.26% 53.14% | 97.93% || 94.49% | 97.77% 1,176 20
TIGRFAMs 15.30% 15.30% | 99.97% || 99.88% | 99.89% 729 22
Total 75.89% 74.50% | 98.17% | 95.66% | 98.42% 7,442 230
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Supplementary Note 1: Homology Relations Missed by Fast-
BLAST.

Among our 2,000 test queries, there were four queries for which FastBLAST missed a hit that
was within the top 10 hits and over 100 bits. For these four worst misses, we show the Genbank
ids (gi #s) for the query and the missed subject, the rank (e.g. 124519843 is the 7th best hit of
71897758 other than itself), the alignment from BLAST, and a brief comment. Apart from the
highly repetitive hit, which we suspect is spurious, the earliest rank is #5 and the highest score is
108 bits.

Query: 71897758
Subject: 124519843
Rank: #7

Clustering fails: subject is clustered with 149199875 (41% identical over a.a. 22-394), but 149199875
is not a BLAST hit of the query.

Score = 105 bits (263), Expect = 3e-22, Method: Composition-based stats.
Identities = 61/175 (34Y%), Positives = 92/175 (52%), Gaps = 4/175 (2%)

Query: 5 QWDSASVADCLVTVPTAGTTKVQTRNYKAARRFPVIDQGRNQIAGWTDDEGAVINAP-FP 63
+W+ S +D + +++T Y + ++PV+DQG+ ++ +++DE V P
Sbjct: 220 EWEKVSFSDIFIKTKVK-KHQIKTNEYLESGKYPVVDQGQKKVTAYSNDEEKVFEVPETG 278
Query: 64 LIVFGDHTRAFKFVKRSFARGADGIQLLRPKSGIDPLFFYACRAID-LPARGYNRHFTIL 122
+IVFGDHTR KF+ F GADG Q+L K D F+Y I +P GYNRHF L
Sbjct: 279 VIVFGDHTREIKFIDFDFIIGADGTQVLMTKDDYDVRFYYYHLLIQKIPNTGYNRHFKFL 338
Query: 123 KEKELTFPRDIDEQAATAEVLRRTEHTLGKQAQILRALHDLKRATMRQLFTCGLR 177

KE P + EQ AI+ +L + L L AL++ K+ M+ L T +R
Sbjct: 339 KEMIFNKP-SLKEQKAISNLLSTIDKELDLLNAELSALNEQKKGLMQLLLTGKVR 392

Query: 145475943
Subject: 71407532
Ranks: #2

The sequences are highly repetitive. Because the query’s repeat has the spacer EGE and the
subject’s repeat has the spacer STP, the repeats must have expanded independently. The similarity
within each repeat is a maximum of only 5 amino acids in a span of 8, so the sequences might not
even be homologous. We show only the first of 8 alignments from BLAST for this pair of sequences.

Score = 157 bits (397), Expect = 4e-37, Method: Composition-based stats.
Identities = 123/421 (29%), Positives = 126/421 (29%)

Query: 440 SEEHGTTEGEGQSEDHGTQEGEGKSDEHGTTEGEGQSEDHGTQEGEGKSEDHGTTEGEGQ 499
S HG S HGT S HGT S HT S HT
Sbjct: 690 SSAHGAPSTPADSSAHGTPSTPVDSSAHGTPSTPADSSAHSTPSTPADSSAHSTPSTPAD 749

Query: 500 SEDHGSQEGEVKSDEHGTTEGEGQSEDHGTTEGEGKSEDHGTTEGEGQSQDHGTTEGEGQ 559
S H+ V S HGT S HT S HGT S HT
Sbjct: 750 SSAHSTPSTPVDSSAHGTPSTPADSSAHSTPSTPADSSAHGTPSTPVDSSAHSTPSTPVD 809

Query: 560 SEDHGTQEGEVKSDEHGTTEGEGQSEDHGTQEGEGKSEDHGTTEGEGQSEDHGTTEGQGQ 619
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Sbjct:
Query:
Sbjct:
Query:
Sbjct:
Query:
Sbjct:
Query:
Sbjct:
Query:

Sbjct:

810

620

870

680

930

740

990

800

1050

860

1110

S HGT Vs HT S HGT S HT S HT
SSAHGTPSTPVDSSAHSTPSTPVDSSAHGTPSTPVDSSAHSTPSTPADSSAHSTPSTPAD 869

SEDHGTQEGEVKSDEHGTTEGEGQSEDHGTQEGEVKSEDHGTTEGEGQSEDHGTQEGEVK 679
S HGT VS HT S HT VS HT S HGT V'
SSAHGTPSTPVDSSAHSTPSTPADSSAHSTPSTPVDSSAHSTPSTPADSSAHGTPSTPVD 929

SDEHGTTEGEGQSEDHGTTEGEGKSEDHGTTEGEGQSQDHGTTEGEGQSEDHGTQEGEVK 739
S HGT S HT S HT S HT S HT
SSAHGTPSTPADSSAHSTPSTPADSSAHSTPSTPADSSAHSTPSTPVDSSAHSTPSTPAD 989

SDEHGTTEGEGQSEDHGTTEGEGQSEDHGTTEGEVKSEDHGTTEGEGQSEDHGTQEGEVK 799
S HT S HT S HT VS HT S HGT
SSAHSTPSTPADSSAHSTPSTPADSSAHSTPSTPVDSSAHSTPSTPADSSAHGTPSTPAD 1049

SDEHGTTEGEGQSEDHGTQEGEGKAEDHGTTEGEGQSEDHSTSEGEVRSDEHGTNDVKED 859
S HT S HT + HGT S HST S HGT D
SSAHSTPSTPVDSSAHSTPSTPADSSAHGTPSTPADSSAHSTPSTPADSSAHGTPSTPAD 1109

T 860
+
S 1110

Query: 121612134
Subject: 57237813
Rank: #5

Although the sequences are nearly identical, and they both map to models 0042501 and 0042480
from SUPERFAMILY, the alignments to those models do not overlap. For example, the query
matches model positions 1:148 from 0042501, while the subject matches model positions 252:447,
both with E-values of better than 107!7. This problem could perhaps be avoided if HMMer had the
option to return secondary high-scoring alignments of the same region to a different portion of the

model.

Score

Query:
Sbjct:
Query:

Sbjct:

= 108 bits (271), Expect = 2e-23, Method: Composition-based stats.
Identities = 67/74 (90%), Positives = 67/74 (90%)

1 MEKSLLFHFRRIGVEFIIFSVYAVFSISWAATGSLMPLISNDLALNTQQATLITSMIVVA 60
MEKSLLFHFRRIGVEFIIFSVYAVFSISWAATGSLMPLISNDLALNTQQATLITSMIVVA
1 MEKSLLFHFRRIGVEFIIFSVYAVFSISWAATGSLMPLISNDLALNTQQATLITSMIVVA 60

61 KIFGASFTAFLVYK 74
KIFGA F K
61 KIFGAYLGLFFKRK 74

Query: 60418535
Subject: 116510983
Rank: #6

We would need to look at additional domains to find this homology. The best domain hits for
this region of the query are to PF01381.13, PF01381.13.fs, and model HTH_XRE from SMART.
FastHMM does not find any hits for these models to the subject (although HMMer would have).
The query also has a weaker hit to SUPERFAMILY model 0045230, which hits the subject, but

FastBLAST does not consider this domain.

Score

= 103 bits (258), Expect = 5e-22, Method: Composition-based stats.
Identities = 54/98 (55%), Positives = 68/98 (69%)
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Query:
Sbjct:
Query:

Sbjct:

6

6

=

=

MNDLFYHRLKELVEASGKSANQIERELGYPRNSLNNYKLGGEPSGTRLIGLSEYFNVSPK 60
M ++FY RLK L SGKS NQIERELGY RN+L NYK GG PSG RL+ L+ YF V P
MENIFYLRLKALTHESGKSFNQIERELGYTRNALANYKNGGVPSGIRLMELANYFKVLPD 60

YLMGIIDEPNDSSAINLFKTLTQEEKKEMFIICQKWLF 98
YL+G + N S N F +LT ++K EM+++CQKW+
YLIGKVPFENVESIENTFVSLTNKQKIEMYLLCQKWIL 98
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