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Abstract

Background: A fundamental goal of molecular evolution is to infer the evolutionary history – the phylogeny – of
sequences from their alignment. Neighbor joining, which is the standard method for inferring large phylogenies,
takes as its input the distances between all pairs of sequences. The distance matrix requires O(N2L) time to
compute and O(N2) memory to store, where N is the number of sequences and L is the width of the alignment.
As some families already contain over 100,000 sequences, these time and space requirements are prohibitive.

Results: We show that neighbor-joining can be implemented in O(NLa) space, where a is the size of the alphabet,
by storing profiles of internal nodes in the tree instead of storing a distance matrix. Profile-based neighbor joining
allows weighted joins, as in BIONJ, but requires that distances be linear. With heuristic search, neighbor joining
with profiles takes only O(N

√
N log(N)La) time. We estimate the confidence of each split (A,B) vs. (C,D) from

the profiles of A, B, C, and D, without bootstrapping. Our implementation, FastTree, has similar accuracy as
traditional neighbor joining. FastTree constructed trees, including support values, for biological alignments with
39,092 or 158,022 distinct sequences in less time than it takes to compute the distance matrix and in a fraction
of the space. Traditional neighbor joining with 100 bootstraps would be 10,000 times slower.

Conclusions: Neighbor joining with profiles makes it possible to construct phylogenies for the largest sequence
families and to estimate their reliability. FastTree is available at http://microbesonline.org/fasttree.

Background

Inferring phylogenies from biological sequences is the
fundamental method in molecular evolution, and has
many applications in taxonomy and for predicting
structure and biological function. In general, se-
quences are identified as homologous, aligned, and
then a phylogeny is inferred. Large alignments can
be constructed efficiently, in O(NL2) time, by align-

ing the sequences to a profile instead of to each other
(e.g., with hmmalign from the HMMer package [1]).

Neighbor joining [2–4] is the most popular
method for constructing large phylogenies. Neigh-
bor joining is also often used to generate an initial
tree before searching for the maximum likelihood
tree (e.g., in PhyML [5]). Neighbor joining relies on a
“distance matrix” that stores an estimate of the evo-
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lutionary distance between each pair of sequences.
Estimating distances requires comparing the entries
at each position in the alignment and hence requires
O(L) time per entry and O(N2L) time overall, and
the distance matrix requires O(N2) space to store.
The neighbor-joining method itself requires a further
O(N3) time, but there are heuristic variants that
take only O(N2) or O(N2 log N) time without sig-
nificant additional memory overhead and with little
loss of accuracy [6, 7].

As DNA sequencing accelerates, the memory
and CPU requirements of the distance matrix ap-
proach are becoming prohibitive. Many families al-
ready contain 100,000-200,000 members: for exam-
ple, the MicrobesOnline database [8], which provides
phylogenies for all protein families from prokary-
otic genomes [9], already contains 100 protein fam-
ilies that contain over 100,000 distinct sequences.
Similarly, an alignment of full-length 16S ribosomal
RNAs from greengenes [10,11] contains over 160,000
distinct sequences. The distance matrix for fam-
ilies with 100,000-200,000 members requires 20-80
gigabytes (GB) of memory to store (a 4-byte float-
ing point value for each of N(N − 1)/2 pairs). Al-
though computers with this much memory are avail-
able, the typical node in a compute cluster has an
order of magnitude less memory. Furthermore, DNA
sequencing technology is improving rapidly, and the
distance matrix’s size scales as the square of the fam-
ily’s size, so we expect these problems to become
much more severe.

If an estimate of the reliability of the tree is
desired, then the usual approach is the bootstrap
[12], which requires rerunning the method 100-1,000
times. The increase of 100-fold means that the com-
putation can take weeks of CPU time for a single
family.

Results and Discussion

Our Approach

We present FastTree, which uses three ideas to re-
duce the space and time complexity of inferring a
phylogeny from an alignment (Figure 1). First, Fast-
Tree stores profiles for the internal nodes in the tree
instead of storing a distance matrix. Although meth-
ods for inferring phylogenetic trees are usually clas-
sified as being either distance-based or character-
based, FastTree is both: FastTree builds profiles at
the internal nodes, and yet it gives exactly the same

result as neighbor joining (if the alignment does not
contain gaps). Each profile includes a frequency vec-
tor for each position, and the profile of an internal
node is the weighted average of its childrens’ pro-
files. FastTree uses these profiles to compute the
distances between internal nodes. These profiles re-
quire a total of O(NLa) space, where a is the size
of the alphabet (20 for protein sequences and 4 for
nucleotide sequences), instead of O(N2) space for
the distance matrix. However, the time required for
neighbor-joining with exhaustive search rises from
O(N3) to O(N3La), because every distance has to
be recomputed on demand in O(La) time.

Second, FastTree uses a combination of previ-
ously published heuristics [6, 7] and a new “top
hits” heuristic to reduce the number of joins con-
sidered. Whereas traditional neighbor joining con-
siders O(N3) possible joins, and previous heuristics
have considered O(N2) possible joins (the size of the
distance matrix), FastTree considers O(N

√
N log N)

possible joins. Thus, in theory, FastTree takes
O(N

√
N log(N)La) time. In practice, FastTree is

faster than computing the distance matrix.
Third, FastTree computes “local” support values

for internal nodes by examining the profiles. Exam-
ining the profiles around every internal split takes
O(NLa) time, and thus has negligible cost relative
to inferring a tree. This gives FastTree an additional
100-fold speed-up relative to neighbor-joining with
bootstrap.

A major limitation of FastTree is that it only sup-
ports linear distance measures. By linear we mean
that the distance betwen two sequences i and j is an
average over positions:

d(i, j) =

L∑

l=1

D(il, jl)

L

where l are the positions in the alignment and D is
a distance measure on nucleotides or amino acids.
Linear distances are not an accurate reflection of
evolution: they do not correct for hidden changes
on long branches (e.g. if A mutates to C and then
back to A) and they saturate (the maximum possible
distance between two sequences is 1 substitution per
site). Correcting for the hidden changes, by using
log-corrected distances [13] or maximum-likelihood
distances [14], leads to a modest improvement in
tree accuracy [15]. In theory, maximum-likelihood
distances should be more accurate than log-corrected

2



distances, but in practice, both methods lead to trees
of similar accuracy [15], and log-corrected distances
are about 1,000 times faster to compute (data not
shown). We will show that despite its use of linear
distances, FastTree is about as accurate as tradi-
tional neighbor joining with maximum-likelihood or
log-corrected distances.

Traditional Neighbor-joining

Given a distance matrix, neighbor joining is a greedy
algorithm for finding a tree of (nearly) minimal
length [2–4]. It begins with a star topology, in which
every sequence is a child of the root, and it joins pairs
of nodes until it the tree has only three children. At
each step, it selects the join that will yield the largest
reduction in total tree-length by finding the pair of
nodes that minimize the “neighbor-joining criterion”

d′(i, j) ≡ d(i, j) − r(i) − r(j)

r(i) ≡

∑

k 6=i

d(i, k)

n − 2

where i, j, k are indices of active nodes that have
not yet been joined, d(i, j) is the distance between
nodes i and j, n is the number of active nodes, r(i)
can be thought of as the average “out-distance” of i
to other active nodes (although the denominator is
n − 2, not n − 1), and d′(i, j) is the criterion.

Once it selects a pair of nodes i, j to join, neigh-
bor joining creates a new internal node ij that is
the parent of i and j, and sets i and j as inactive.
It sets distances for the new node according to the
“reduction” rule:

d(ij, k) =
d(i, k) + d(j, k) − d(i, j)

2

and the distance from the new node to its children
is given by

d(ij, i) =
d(i, j) + r(i) − r(j)

2

and similarly for d(ij, j).

Neighbor-joining with Profiles

FastTree computes the neighbor-joining criterion
d′(i, j) in O(La) time without storing a distance ma-
trix. Instead, FastTree stores the aligned input se-
quences and the profiles of the interior nodes. At

each position, the profile of a new joined node ij is
the average of the profiles of i and j. For example,
if we join two leaves i and j, and i has an A at a
position and j has a G, then the profile of ij at that
position will be 50% A and 50% G (and 0% for other
characters). If we then join ij to kl, where kl’s pro-
file is 40% A and 60% T , then the new node ijkl will
have the profile 45% A, 25% G, and 30% T at that
position.

If the distances are linear, then the average of
d(i, k) and d(j, k), which is used to compute d(ij, k),
can be computed by comparing the profile of k to
the profile for ij. The remaining term in d(ij, k),
the −d(i, j)/2 term, can be thought of as a correc-
tion for the distance up from i or j to ij. We store
this “up-distance” u(ij) when we create the joined
node. For leaves, no correction is needed, and the
“up-distance” is zero. Thus, for any pair of nodes i
and j, we write

d(i, j) = P (i, j) − u(i) − u(j)

where P (i, j) is a “profile distance” that is the aver-
age distance between profile characters over all po-
sitions:

P (i, j) ≡

L∑

l=1

D(~Pl(i), ~Pl(j))

L

D(~Pl(i), ~Pl(j)) ≡
∑

a,b

Pl(i, a)Pl(j, b)D(a, b)

where Pl(i, a) is the frequency of a in the profile of i
at position l and D(a, b) is the distance measure on
characters. For example, if we use a simple %differ-
ent notion of distance, so that the distance between
two characters is 0 if they match or 1 otherwise, then
the distance between frequency vectors (0.6, 0.4, 0, 0)
and (0.5, 0, 0.5, 0) is 0.6 · 0.5 · 0 + 0.6 · 0.5 · 1 + 0.4 ·
0.5 · 1 + 0.4 · 0.5 · 1 = 0.7.

The total distance to other nodes, which is re-
quired to compute the r(i) term in the criterion, can
be computed by comparing the profile of i to a “total
profile” which is the average over all active nodes:

n∑

j=1

P (i, j) = nP (i, T )

where T is the total profile. Thus, computing the
criterion d′(i, j) requires three profile comparisons
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(for P (i, j), P (i, T ), and P (j, T )). The distance be-
tween two profiles can be computed in O(La) time,
instead of the naive O(La2) time, by using the eigen
decomposition of the alphabet’s distance matrix (see
Methods). Thus, FastTree takes O(La) time to com-
pute the neighbor-joining criterion. In the Methods
section, we give a formula for u(ij) and we show that,
with this formula, FastTree gives the exact same val-
ues as traditional neighbor joining for the distance
between internal nodes and for the neighbor joining
criterion if the alignment contains no gaps and the
distance between sequences is linear.

With ungapped sequences and a linear distance
measure, profiles can also be used to give an exact
implementation of weighted neighbor-joining meth-
ods such as BIONJ [16]. BIONJ achieves a modest
increase in accuracy [15] by weighting long branches
(rapidly evolving sequences) lower when combining
d(i, k) and d(j, k) to give d(ij, k). With profiles, this
is represented by weighting the contribution of i and
j to the profile of ij and by modifying the formula
for the up-distances u(ij). In traditional BIONJ,
the weight for the join is computed from a “variance
matrix” which is obtained from the distances by an-
other reduction formula. As this reduction formula
is also linear, it can also be implemented by profiles
(see Methods).

Gaps

The description in the previous section assumes
that the alignment has no gaps. Indeed, alignment
columns that contain gaps are often removed, which
is known as “trimming” the alignment. Gapped
columns are removed both because they often rep-
resent uncertain positions in the alignment and be-
cause, even for correct alignments, it is not clear how
gaps should be interpreted. However, for large se-
quence families, trimming away all of the gaps is not
practical: very few positions are represented in every
member of the sequence, and trimming away every
position that contains a gap would eliminate most of
the phylogenetic signal. Instead, the gaps are usu-
ally treated as missing data. When computing the
distance between two sequences, it is straightforward
to remove positions that are missing from either se-
quence.

If the alignment does contain gaps, then FastTree
will not give the exact same result as traditional
neighbor joining. FastTree records the fraction of
gaps at each profile position, and when computing

distances, FastTree weights positions by their pro-
portion of non-gaps. If d(A,B) = dAB/nAB , where
nAB is the number of positions that are not gaps in
either sequence, and d(B,C) = dBC/nBC then the
profile method will approximate the average of the
two distances by (dAB + dBC)/(nAB + nBC). For
example, consider this alignment of three sequences
and seven positions with the alphabet {0,1}:
1010-10 (A)

10111-0 (B)

1011-11 (C)

101?..0 (AB) profile

where the profile for AB is shown with “.” for part-
gap positions and “?” for a mixture of 0 and 1.
d(A,C) = 2/6 and d(B,C) = 1/5. By the profile
approach, P (AB,C) = (1 + 0.5)/(5 + 0.5) = 3/11 =
0.273, but (d(A,B) + d(A,C))/2 = (2/6 + 1/5)/2 =
0.267. As this example illustrates, the change due to
using profiles is not large. A similar issue also arises
with estimating the average distance to other nodes
r(i) (formulas for r(i) in the presence of gaps are
given in the Methods). We will show that this ap-
proximation leads to acceptable results in practice,
even for highly gapped alignments.

Heuristics for neighbor joining in O(N2 log(N)La)
time

Traditional neighbor joining conducts an exhaustive
search for the best join at each step. There are
N − 3 joins, and n(n − 1)/2 candidate joins at each
step, where n is the number of active nodes, so it
takes O(N3) time to search for the best joins. This
dominates the running time. We use a combination
of two previously published heuristics, FastNJ [6]
and relaxed neighbor joining [7], to reduce the num-
ber of joins considered at each step from O(n2) to
O(n log n). In the next section, we will show how to
further reduce the number of joins considered.

The key idea in FastNJ is to store the best join
for each node. The best join for each leaf is deter-
mined before the joins begin, and the best join for
each new interior node is determined when that node
is created. When searching for the best join overall,
FastNJ considers only best join for each node, or n
candidates. Thus, FastNJ requires a total of O(N2)
time. Although FastNJ gives correct results on dis-
tance matrices that closely approximate distances on
a tree, it suffers from a small reduction in accuracy
in practice [6]. The best join for a node according to
the neighbor-joining criterion can change over time
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because the r(i) values change after every join.
In relaxed neighbor joining, a local hill-climbing

search is used to find a “locally best” join. Given an
(arbitrary) node A, it will find the best join partner
B for A, and then the best join partner C for B. If
A=C, then A and B are each other’s best hit and
it has reached a local optimum; otherwise it contin-
ues searching from (B,C). To avoid very poor local
optima, relaxed neighbor joining also adds a check
to ensure that is not lengthening the tree. (If it is,
it starts over with another node.) Relaxed neighbor
joining takes O(N2 log N) time and is reported to
have about the same accuracy as traditional neigh-
bor joining [7], although it results in a small loss of
accuracy in our tests (see below).

To combine these two heuristics, we store the
best hit for each node and we search for the best join
among these n best hits, as in FastNJ. Then, we do
a local hill-climbing search, as in relaxed neighbor
joining. Because we are always starting with a “rel-
atively good” join, we omit the check on the total
tree length. Finally, if we create a new interior node
and find that it is a better join for an existing node
than the previously known best hit for that node, we
update that node’s best hit. This greatly reduces the
amount of hill-climbing search that is required (data
not shown).

In theory, this method takes O(N2 log NLa)
time, because hill-climbing takes an average of
O(log N) iterations to converge, it is run on each
of N − 3 joins, and each hill-climbing step computes
the neighbor joining criterion O(N) times. However,
hill-climbing is rarely necessary: for example, when
we ran FastTree on 39,092 distinct sequences from
Pfam PF00005, it took only 433 hill-climbing steps,
or ≈ 0.01 steps per join, rather than log2 N = 15.3
steps per join. Thus, the running time seems to be
O(N2La) in practice.

Top-hits heuristic for neighbor joining in
O(N

√
N log(N)La) time

To reduce the search time further, we use a top-hits
heuristic. The intuition is that if A and B are close
to each other, then the top hits of A and B will
largely overlap. Similarly, when we join A and B,
we expect that the best hit of the new node AB will
be found among the top hits of A and B. We store
the top m =

√
N hits for each node.

To initialize the top-hit lists, before we do any
joins, we take an arbitrary “seed” sequence, we com-

pare it to all other sequences by using the neighbor
joining criterion, and we select the top m results.
This takes O(NL) time. The top m hits of the seed
are likely to be close neighbors. (FastTree has addi-
tional checks to verify that the top hit lists are likely
to be similar – see Methods.) We can approximate
the top hit list of each neighbor by comparing that
neighbor to the top 2m hits of the seed, where the
two is an arbitrary safety factor. This takes O(m2L)
time. We can then remove these close neighbors
from the list of seed sequences. This method con-
siders up to N/m seeds and hence takes a total of
O(N2L/m+NmL) time. Because we use m =

√
N ,

this reduces to O(N
√

NL) time, which is the best
possible with this approach.

When we join A and B, we merge the top hit lists
to get up to 2(m − 1) candidates, we compare the
new node to those candidates, and we store the top
m hits. If the top hit lists of A and B are identical,
then we will be left with only m− 1 top hits for AB
(we must remove A and B). Thus, we allow the top
hit list to drop below m in size (m does not change
while the algorithm runs).

Also notice that when we join A and B, any hits
to A or B in the top-hit lists of other nodes should
be replaced by hits to AB. FastTree does this in
a “lazy” way: when it encounters a hit to a joined
node, it replaces that with a hit to the active ances-
tor. If another node has top hits to both A and B,
then both hits would eventually be replaced by AB,
so this is another way that the top-hit lists become
shorter.

If the top-hit list has shrunk too much (below
0.8m, where 0.8 is an arbitrary parameter), then we
“refresh” – we recompute the top-hit list for the new
joined node and we update the top-hit lists of the
new node’s top hits. FastTree also refreshes if this
part of the tree has not been refreshed in many joins
(see Methods). To refresh, we compare the new node
to all n − 1 other active nodes, and we save the top
m hits. Then, we compare the close neighbors of
AB (the top m hits) to the top 2m hits of AB, and
we update the close neighbors’ top-hit lists by merg-
ing. Refreshing a top-hit list takes O(nLa + m2La)
= O(NLa) time and ensures that the top-hit lists
of O(m =

√
N) other nodes reach size m. Thus,

the refreshes take a total of O(N
√

NLa) time. We
also note that if the top hit list has size equal to
the remaining number of active nodes (e.g. because
n ≤ m), then the top-hit lists are exhaustive. At
that point there is only O(m2La = NLa) work re-
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maining.
Finally, given the top-hit lists, we need to find

the best join in O(mLa) time. We use the heuristics
described in the previous section, with the further re-
striction that we consider only the top m candidates
at each step. Thus, we first find the best m joins
among the best-hit entries for the n active nodes.
In principle, this can be implemented in O(m log n)
time by using a priority queue. (FastTree simply
sorts all n entries, which adds a total of O(N2 log N)
to the running time. For 100,000 sequences, this is
not significant compared to the O(N

√
N log(N)La)

time for the other steps.) Then, we compute the cur-
rent value of the neighbor-joining criterion for those
m candidates, which takes O(mLa) time, and we se-
lect the best one. Given this candidate join, we do
a local hill-climbing search for a better join, but we
only search within the top-hit lists rather than com-
paring the two nodes to all other active nodes, so
this takes O(m log(N)La) time.

When we do a join, we also need to update the
total profile (the average over all active nodes). To
compute this profile takes O(nLa) time. However,
we can subtract the joined nodes and add the new
node to the total profile in O(La) time. (FastTree
recomputes the total profile from scratch every 200
iterations to avoid roundoff errors from accumulat-
ing, where the choice of 200 is arbitrary. This adds
another O(N2La/200) work.)

In theory, this method takes O(N
√

NL)
time to find the top hits for the sequences,
O(N

√
N log(N)La) time to search for the best joins,

and O(N
√

NLa) time to update the top-hit lists,
for a total of O(N

√
N log(N)La) time. Because

some sequences may not have O(m) close neigh-
bors, it is not clear if our method can truly attain
O(N

√
N log(N)La) time without sacrificing accu-

racy. Nevertheless, we will show that for large prob-
lems, FastTree is faster than computing the distance
matrix. We will also show that the top-hit heuristic
does not reduce accuracy.

“Local” Support Values

Whatever the method used, inferred phylogenies of-
ten contain errors, and so it is essential to esti-
mate the reliability of the result [17]. The standard
method to estimate reliability is to use the boot-
strap [12]: to resample the columns of the alignment,
to rerun the method 100-1,000 times, to compare the
resulting trees to each other or to the tree inferred

from the full alignment, and to count the number of
times that each split occurs in the resulting trees.
(A split is the two sets of leaves on either side of
an internal edge.) Bootstrap estimates reliability,
not accuracy: the inferred tree may be incorrect be-
cause of bias (e.g., long branch attraction), and not
just because of limited phylogenetic signal (e.g., not
enough positions in the alignment). Thus, splits that
are found in all or almost all of the resampled trees
may yet be incorrect. Nevertheless, the bootstrap is
by far the most popular method to check the relia-
bility of phylogenetic inference.

Unfortunately, bootstrapping is a minimum of
100 times slower than the underlying phylogenetic
inference. Commonly used tools, such as phylip’s
consense [14] and quicktree [18], also use O(N3) time
and O(N2) space to compare two trees to each other
(data not shown). Tree comparison could be imple-
mented in O(N2) time and O(N) space by using a
hash table to look up the lists of nodes on each side
of a split. (The lists of nodes are represented by the
trees and need not be stored.) In any case, because
of these memory and time requirements, bootstrap-
ping a tree with just 10,000 sequences takes days of
CPU time with current tools (see below).

To estimate the reliability of the tree more
quickly, we compute a local support value using a
minimum evolution framework (that is, the assump-
tion that the tree with the shortest total branch-
length is the best tree). As neighbor joining is a
greedy search for a minimum evolution tree [4], this
is the appropriate framework to use to test the reli-
ability of a neighbor joining tree. The concept of lo-
cal support was originally introduced in a maximum
likelihood framework [19]. Our method also seems
similar to the minimum-evolution test [20], although
as far as we know that test has not been implemented
efficiently for large numbers of sequences.

We measure how strongly the minimum evolu-
tion criterion supports each split over the other two
possible topologies around that edge. This is a local
support value because we do not consider how this
change might alter other parts of the tree (or the
profiles for the 4 nodes around this edge). More pre-
cisely, we estimate the probability P that support
this strong would occur by chance, and we report
1 − P as a support value. Alternatively, FastTree
also includes the option to compute a local boot-
strap (the proportion of resampled alignments that
support this split over the two alternate splits).

Given four subtrees A,B,C,D, the tree

6



((A,B),(C,D)) is preferred by the minimum evo-
lution criterion if

d(A,B) + d(C,D) < min(d(A,C) + d(B,D),

d(A,D) + d(B,C))

where the two terms in the minimum corre-
spond to the alternate topologies ((A,C),(B,D)) and
((A,D),(B,C)). This comparison can be done us-
ing profile-distances, without considering the “up-
distances”, because changing all distances for a node
by a constant does not affect the relative values of
the above criterion.

We compute the amount by which ((A,B),(C,D))
is favored over each of the other two topologies at
each position, which gives two sets of values

x1l ≡ Pl(A,C) + Pl(B,D) − Pl(A,B) − Pl(C,D)

x2l ≡ Pl(A,D) + Pl(B,C) − Pl(A,B) − Pl(C,D)

over positions l, where Pl(A,B) is the profile dis-
tance between A and B at that position. Given lin-
ear distances, the minimum evolution criterion can
be written as

min(x̄1, x̄2) > 0

where x̄1 is the mean of {x1l}. To compute a local
bootstrap, we can resample x1 and x2 over positions
and determine how often this minimum evolution
criterion is met.

We can also use x1, x2 to ask how often such
strong support would occur by chance under the null
hypothesis that the true phylogeny is a star topol-
ogy (A,B,C,D). We treat the two sets as correlated
normal variables with means of zero (as implied by
the null hypothesis of a star topology). We test how
often a value as high as the observed y = min(x̄1, x̄2)
would be expected by chance. There are three possi-
ble splits, for which neighbor joining usually selects
the best one, so the under the null hypothesis, the
cumulative distribution of y is given by

P (y) = P (min(x̄1, x̄2) > y|min(x̄1, x̄2) > 0)

= 3 · P (min(x̄1, x̄2) > y)

The distribution of min(x̄1, x̄2) is roughly normal be-
cause the two variances are similar and the correla-
tion is nonnegative (data not shown). So, we esti-
mate the variances of x1 and x2 and their correlation
from the data, and we use the analytic formulas for
the mean and variance of the minimum of two nor-
mals [21] to describe the distribution of min(x̄1, x̄2).

We then use a one-tailed normal test to estimate
P (min(x̄1, x̄2) > y) and the formula above to give
P (y) and hence the support value 1−P (y). We will
show that in practice, these support values are ef-
fective at distinguishing correct splits from incorrect
splits.

To compute x1, x2 we need additional profiles be-
yond those constructed during neighbor joining. For
example, to test the split of DE versus ABC in the
tree (A,B,(C,(D,E))) we need profiles for AB as well
as for C, D, and E, but the only internal profiles con-
structed during neighbor joining are for (D,E) and
for (C,(D,E)). These additional profiles can be com-
puted by depth-first search from the root in O(NLa)
time and take a maximum of O(dLa) space to store,
where d is the maximum number of edges down to
any leaf from the root. (There are O(N) additional
profiles but only O(d) of them are required at any
one time.) In practice, d ≪ N , so computing the
support values costs negligible time or space relative
to constructing the tree.

Performance of FastTree

Topological Accuracy in Simulations

To verify that profile-based neighbor joining re-
turns the same results as traditional neighbor join-
ing for ungapped alignments, we simulated 150 un-
gapped alignments of 40 protein sequences with re-
alistic phylogenies and alignment widths by using
Rose [22] (see Methods for details). For each align-
ment, we ran FastTree with exhaustive search and
we ran BIONJ, a weighted variant of neighor join-
ing [16], with the corresponding distance matrix. We
used linear distances with distances between individ-
ual amino acids derived from the BLOSUM45 [23]
amino acid similarity matrix (see Methods). For all
of these alignments, FastTree and BIONJ gave the
same topology and the same branch lengths (within
round-off error). If we used unweighted joins instead
of weighted joins, FastTree gave the same results as
quicktree, an implementation of traditional neighbor
joining [18].

As explained above, profile-based neighbor join-
ing cannot give the same result as traditional neigh-
bor joining on alignments with gaps. FastTree’s ap-
proximation may be particularly inaccurate when
the number of gaps varies across sequences (see
Methods). To create alignments with an extreme
variation in the number of gaps, we truncated the
sequences in these simulations at one end, so that
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they ranged from having no gaps to being 80% gaps.
We measured the topological accuracy of the result-
ing trees (that is, the proportion of splits in the true
trees that were recovered by FastTree or by tradi-
tional neighbor joining). The topological accuracy
of FastTree (with weighted joins and again with ex-
haustive search) was virtually identical to that of
BIONJ (both were 63.2%), which suggests that Fast-
Tree’s handling of gaps is acceptable.

To test whether the search heuristics in FastTree
give acceptable accuracy, we simulated 81 gapped
alignments of 2,000 protein sequences with realistic
phylogenies and alignment widths. We also tested
several other implementations of neighbor joining,
all using the same distance measure derived from
BLOSUM45 [23] (see Methods). We found that
FastTree was 4.1% less accurate than BIONJ and
1.6% less accurate than quicktree, but FastTree was
3.0% more accurate than clearcut, an implementa-
tion of relaxed neighbor-joining [7] (see Table 1). All
of these differences were statistically significant (all
P < 10−15, paired t test, n = 81). The loss of accu-
racy due to the best hits, local hill-climbing, and top-
hits heuristics was negligible: heuristic FastTree was
about 0.1% less accurate than FastTree with exhaus-
tive search, and this difference was not statistically
significant (P > 0.3). The weighted joins in Fast-
Tree did give a slight (0.6%) but statistically signifi-
cant improvement in accuracy (P < 10−12). We are
not sure why FastTree is less accurate than BIONJ
– because FastTree with exhaustive search gives the
same results as BIONJ for non-gapped alignments,
it may be due to FastTree’s approximations for gaps.

One limitation of FastTree relative to the dis-
tance matrix methods is that FastTree cannnot use
non-linear distances. Log-corrected distances gave
a small increase in accuracy for both BIONJ and
clearcut (Table 1). However, clearcut was still
less accurate than FastTree (68.4% vs. 70.9%,
P < 10−15). As reported previously [15], BIONJ
gave trees of about the same accuracy with either
log-corrected or maximum-likelihood distances (only
0.12% different, see Table 1).

Although FastTree is less accurate than some
other neighbor-joining methods, it is not clear if
this is significant in practice. Most of the erroneous
splits found by FastTree have poor support (see be-
low). Conversely, we found that most splits missed
by FastTree but found by BIONJ have poor sup-
port. To quantify the support, we used the approxi-
mate likelihood ratio test (aLRT) of PhyML [19,24]

(see Methods for details). For neighbor joining trees,
aLRT is a better measure of support than the boot-
strap (see below). We considered a split to have
significant support if the aLRT value was 90% or
higher. We found that BIONJ with log-corrected
distances, the best method in Table 1, inferred 54.2%
of splits correctly and with significant support, while
FastTree with default settings (heuristic search and
weighted joins) inferred 53.8% of splits correctly and
with significant support. This 0.4% difference in ac-
curacy for well-supported splits is much smaller than
the 4.7% overall difference. More broadly, maximum
likelihood methods are more accurate than neighbor
joining, but most of those additional correct splits
also have poor support [17]. Thus, the additional
correct splits found by methods other than FastTree
generally have poor support and might not be useful
for drawing biological conclusions.

Quality of Trees for Genuine Protein Families

To test the quality of FastTree’s results on genuine
protein families, we inferred topologies with Fast-
Tree and with other implementations of neighbor
joining and we used the tree’s likelihood (after op-
timizing the branch lengths with PhyML [5]) as an
estimate of the tree’s quality. As shown in Table
2, for alignments of 500 sequences, FastTree gives
results of the same quality as BIONJ with either
log-corrected distances or maximum likelihood dis-
tances, and FastTree gives significantly better results
than either clearcut or quicktree. Surprisingly, Fast-
Tree with heuristic search gives slightly better re-
sults than FastTree with exhaustive search. This ef-
fect is statistically significant, but it is small, and it
is not entirely consistent: exhaustive search returns
trees with higher likelihoods for 99 of the 304 fami-
lies. Overall, these tests confirmed that the quality
of FastTree’s trees is competitive with those from
traditional neighbor joining.

Quality of Support Values

To compare our support values to the traditional
bootstrap, we simulated gapped alignments of se-
quences by using Rose [22]. We simulated 150 un-
gapped alignments of 40 protein sequences each with
realistic topologies and alignment widths, and we in-
ferred a topology from each alignment with FastTree.
The inferred topologies were 76.6% accurate. We
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computed local (probabilistic) support values and lo-
cal bootstrap with FastTree, as described above, and
we computed traditional bootstrap by resampling
each alignment 100 times with SEQBOOT [14], run-
ning FastTree on each resample, and recording how
often each split appeared in the resampled trees.

The local support values were highly correlated
with traditional bootstrap values (Spearman rank
correlation ρ = 0.89). Local bootstrap had a similar
correlation with traditional bootstrap (ρ = 0.88).
To quantify the ability of each measure to distin-
guish correct splits from incorrect splits, we used the
Kolmogorov-Smirnov D-statistic, a non-parametric
measure of the dissimilarity of two distributions that
ranges from 0 for identical distributions to 1 for non-
overlapping distributions. All three measures had a
similar ability to distinguish correct splits (D = 0.65
for local support, D = 0.66 for local bootstrap, and
D = 0.64 for traditional bootstrap).

We also compared FastTree’s support values to
a maximum-likelihood implementation of local sup-
port, the approximate likelihood ratio test [19] of
PhyML [5]. FastTree’s local support values were
strongly correlated with support values from PhyML
aLRT (ρ = 0.87), but PhyML aLRT was better at
distinguishing correct splits than either FastTree or
traditional bootstrap (D = 0.73 versus D = 0.65 or
D = 0.64).

Finally, for incorrect splits, the distribution of
the local support values should be uniform. As
shown in Figure 2C, the distribution of local sup-
port values is roughly uniform in practice. There is a
peak near zero, which reflects highly uncertain splits,
but this does not affect the interpretation of signif-
icant values (0.95 or above). For incorrect splits,
FastTree’s support values are more uniform than the
traditional bootstrap or the local bootstrap. The
figure also illustrates that FastTree’s support values
between 0.8 and 0.9 should not be interpreted as
offering much support, as is sometimes done with
bootstrap values (only 75% of such splits were cor-
rect).

Computational Performance

To test FastTree’s performance on genuine fami-
lies, we ran FastTree on a gene family from the
COG database [25] (COG2814), a domain family
from PFam [26] (PF00005), and a trimmed align-
ment of all sequenced full-length 16S rRNAs [10,11].
These families contain 8,362, 39,092, and 158,022

distinct sequences, respectively. As shown in Ta-
ble 3, FastTree is faster than computing the dis-
tance matrix, and for PF00005 and 16S rRNA it
requires far less memory. If estimates of the tree’s
reliability is required, then even for COG2814, Fast-
Tree is 1,000 times faster than traditional neighbor
joining (quicktree) with 100 bootstraps. Maximum-
likelihood methods (e.g. PhyML [5] or RAxML [27])
were even slower than quicktree with bootstrap.

For the 16S alignment, the only other method
that seems practical is clearcut. Clearcut itself is
very fast – we estimate that it might take only 10
hours to infer a tree from the 16S distance matrix.
However, clearcut requires a distance matrix, and
FastTree is faster than clearcut once the cost of com-
puting the distance matrix is included. Clearcut
would also require over 50 gigabytes of memory –
20 times as much as FastTree – which makes it im-
practical for us to run. Unlike FastTree, Clearcut
does not produce support values – producing those
would take at least 100 times longer (or over half a
year). Furthermore, clearcut seems to be less accu-
rate than FastTree (Tables 1 & 2). Overall, we found
that FastTree scales to the largest sequence families,
while the distance matrix methods have prohibitive
CPU and memory requirements.

Future Work

Log-corrected distances

Log-corrected distances of the form − log(1−d) yield
a small improvement in accuracy (Tables 1 & 2; [15]),
presumably because they correct for back-mutations
on long branches and thus help to avoid long-branch
attraction. FastTree cannot use log-corrected dis-
tances because there is no way to compute the aver-
age of the log(1 − d) values from the profiles. How-
ever, it might be possible to achieve the same effect
by log-correcting the distances between nodes d(i, j)
and the “out-distances” r(i). A more sophisticated
distance measure could also be used to compute sup-
port values.

Branch-swapping

After neighbor joining is completed, FastTree al-
ready tests whether the topology around internal
nodes are consistent with the minimum evolution
criterion. In a significant minority of cases (14%
of splits for PF00005), the minimum evolution cri-
terion prefers an alternate topology, and FastTree
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could change the topology (a nearest-neighbor in-
terchange). In our simulations, the majority of
these “bad splits” are incorrect (data not shown),
so altering them should improve accuracy. The
nearest-neighbor interchanges might take as little as
O(N log(N)La) time, so they need not increase the
running time of FastTree too much. It should also
be possible to use a higher-quality distance metric
on profiles during this step.

Nearest-neighbor interchanges with a minimum
evolution criterion have previously been imple-
mented in a distance matrix approach in FastME
[28]. Although FastME gives better results than un-
weighted neighbor joining, it seems to be less ac-
curate than BIONJ [15]. We suspect that this is
because FastME uses unweighted joins, and that
nearest-neighbor interchanges with weighted joins
would improve accuracy. In any case, it should be
possible to improve the accuracy of FastTree to that
of traditional neighbor joining with high-quality dis-
tances.

Progressive Multiple Sequence Alignment

In this work, and in our web site tools (MicrobesOn-
line [9]), we rely on profile-based multiple sequence
alignment as the most practical method for the
largest families. However, profile-based alignment is
believed to be less accurate than progressive align-
ment. One of the limiting steps in progressive align-
ment is the construction of the guide tree. The
top-hit heuristic, or perhaps FastTree itself, might
be useful for this step. For example, PartTree [29]
uses a divide-and-conquer algorithm and k-mer dis-
tances to compute a (lower accuracy) guide tree on
unaligned sequences in O(N log(N)L) time. This
tree could be used to generate an initial alignment,
and FastTree could be used to generate the guide
tree for another iteration of progressive alignment.

In principle this approach could lead to accurate
progressive alignments in less than O(N2L) time.
However, the number of gaps in an alignment grows
with the number of sequences, because of indepen-
dent insertions in the subfamilies. To achieve pro-
gressive alignment in less than O(N2L′) time, where
L′ is the length of the longest input sequence, would
require masking out subfamily-specific insertion po-
sitions while analyzing the other parts of the tree.

Conclusions
FastTree implements neighbor joining with profiles
of internal nodes instead of an explicit distance ma-
trix. The main limitations of FastTree are that
distances must be linear and that approximations
are required to handle gaps. However, with both
simulated and genuine protein alignments, FastTree
is about as accurate as traditional neighbor-joining
methods that use a distance matrix. On simu-
lated data, FastTree was slightly less accurate than
the best of these methods [15], BIONJ with log-
corrected or maximum-likelihood distances, but on
genuine families, FastTree and BIONJ gave trees of
the same quality (as measured by likelihood). In
both tests, FastTree more accurate than either un-
weighted neighbor joining with %different distances
(quicktree) or relaxed neighbor joining (clearcut).

FastTree uses three heuristics to reduce the
search effort for finding the best join: it stores the
best-hit of each node [6], it uses local hill-climbing
[7], and it estimates the top hits a node from the top
hits of a close neighbor. These heuristics do not lead
to any appreciable loss of accuracy, and because of
them, FastTree requires less than O(N2L) time in
theory. In practice, for the largest alignments, Fast-
Tree is faster than computing the distance matrix.
Thus, FastTree is faster than any method that re-
quires a distance matrix, and much faster than tra-
ditional neighbor joining (O(N3) time).

FastTree computes local support values rather
than using the bootstrap, which gives FastTree an-
other 100-fold speed-up. For families of under 10,000
sequences, this is probably the main practical ad-
vantage of FastTree. FastTree’s local support values
have a roughly uniform distribution for the incor-
rectly inferred splits and are about as effective as
traditional bootstrap in distinguishing correct splits
from incorrect splits. However, the scale of the sup-
port values may be different. Whereas bootstrap
proportions as low as 0.8 are often interpreted as
significant support, in our experience, only FastTree
support values of 0.9 or above indicate that a split
is probably correct. But because FastTree’s support
values estimate the strength of rejection of a star
topology, for difficult problems where most splits are
unresolvable, the posterior probability of a split be-
ing correct, given a support value of 0.9, could be
lower.

Finally, because FastTree stores O(N) profiles of
size O(La) each instead of an O(N2) distance ma-
trix, FastTree requires far less memory than tradi-
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tional neighbor joining. As families grow larger, this
will make distance matrix approaches untenable: for
the 16S alignment, with 158,022 distinct sequences,
the distance matrix is already 50 GB. Thus, Fast-
Tree makes it practical to infer phylogenies for fami-
lies with hundreds of thousands of sequences. These
phylogenies will be useful for reconstructing the tree
of life and for predicting functions for the millions
of uncharacterized proteins that are being identified
by large-scale DNA sequencing.

Methods
Details of FastTree

Exact distances between internal nodes for gap-free
alignments

Here we show that, for gap-free alignments, we can
compute the distances between internal nodes, ac-
cording to the reduction formula of neighbor-joining
or BIONJ, from the profiles and the “up-distances”
u(i). When we join two nodes i and j, we store a
profile or a frequency vector at each position l for
the new parent node ij as the (weighted) average

~Pl(ij) = λ~Pl(i) + (1 − λ)~Pl(j)

where λ is the weight for BIONJ or λ = 1/2
for neighbor joining. Because the profile distances
P (i, j) are linear,

P (ij, k) = λP (i, k) + (1 − λ)P (j, k)

Now, if we first consider unweighted joins, the re-
duction formula for neighbor joining is [3]

d(ij, k) =
d(i, k) + d(j, k) − d(i, j)

2

and we write

d(ij, k) = P (ij, k) − u(ij) − u(k)

u(ij) =
P (i, j)

2

and u(l) = 0 for leaves. For two leaves i and j,
P (i, j) = d(i, j), so this gives the correct distance
between leaves. Assume the distances are correct
for all nodes so far and consider the next join ij:

d(ij, k) =
d(i, k) + d(j, k) − d(i, j)

2

=
1

2
(P (i, k) − u(i) − u(k)

+P (j, k) − u(j) − u(k)

−P (i, j) + u(i) + u(j))

=
P (i, k) + P (j, k)

2
− P (i, j)

2
− u(k)

= P (ij, k) − u(ij) − u(k)

which shows that our distances are correct for
d(ij, k) and, by induction, for all nodes. For
weighted joins, a similar argument shows that

u(ij) = λ(u(i) + d(i, ij)) + (1 − λ)(u(j) + d(j, ij))

gives the same result as the distance reduction for-
mula for BIONJ [16]

d(ij, k) = λ(d(i, k) − d(i, ij))

+(1 − λ)(d(j, k) − d(j, ij))

For BIONJ, we also need to reduce the “vari-
ance” matrix. The variance values for pairs of leaves
are the same as the distance values, and the BIONJ
reduction formula for variances is [16]

v(ij, k) = λv(i, k) + (1 − λ)v(j, k) − λ(1 − λ)v(i, j)

which can be computed from profile-distances by us-
ing a “variance correction” ν(i) analogous to the up-
distances, where ν(i) = 0 for leaves and

v(i, j) = P (i, j) − ν(i) − ν(j)

ν(ij) = λν(i) + (1 − λ)ν(j) + λ(1 − λ)v(i, j)

Given these variances, BIONJ weights the join of
i, j so as to minimize the variance of the distance
estimates for the new node ij, using the formula

λ =
1

2
+

∑

k 6=i,j

(v(j, k) − v(i, k))

2(n − 2)v(i, j)

where n is the number of active nodes before the join
takes place.

Handling gaps

Here we explain how, in the presence of gaps, Fast-
Tree can still achieve a good approxmation of neigh-
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bor joining. The distance between two profiles be-
comes

P (i, j) ≡

L∑

l=1

D(~Pl(i), ~Pl(j))wl(i)wl(j)

L∑

l=1

wl(i)wl(j)

where wl(i) is the proportion of non-gaps for i at
position l. The proportion of non-gaps for an inter-
nal node is just the weighted average of the values
for its children. (The profiles’ frequency vectors do
not include gaps.) As explained above, these profile
distances are good but not exact estimates of the
weighted averages of distances between nodes.

The key complication introduced by gaps is the
computation of the out-distances r(i). In the ab-
sence of gaps, the average profile distance between
a node and all other nodes can be inferred from the
total profile T :

r(i) =

∑

j 6=i

d(i, j)

n − 2

∑

j 6=i

d(i, j) =
∑

j 6=i

(P (i, j) − u(i) − u(j))

=
∑

j

P (i, j) − P (i, i) − (n − 1)u(i) −
∑

j 6=i

u(j)

= nP (i, T ) − P (i, i) − (n − 1)u(i)

−(
∑

j

u(j) − u(i))

which can be computed in O(La) time if we store the
total profile T and the total of all the up-distances.

In the presence of gaps, this formula is not
a good approximation because highly gapped se-
quences contribute little to the total profile. Instead,
we need to take the weights of the comparisons into
account. Let T − i be the total profile with the con-
tribution from i removed. Then

∑

i6=j

P (i, j) ≈ (n − 1)P (i, T − i)

P (i, T − i) =

∑

j 6=i

L∑

l=1

Pl(i, j)wl(i)wl(j)

∑

j 6=i

L∑

l=1

wl(i)wl(j)

P (i, T ) =

∑

j

L∑

l=1

Pl(i, j)wl(i)wl(j)

∑

j

L∑

l=1

wl(i)wl(j)

which leads to a formula for P (i, T − i) in terms
of P (i, T ) and P (i, i) and the total weights of those
comparisons. In practice, this gives a good approxi-
mation for the out-distances in the presence of gaps
(data not shown).

However, this introduces a small bias into the
neighbor joining criterion. An intuitive justification
of the neighbor joining criterion is that it is not al-
tered if we increase the rate of evolution along one
branch, or, in other words, we increase all d(i, j) for
a given i by the same amount. This is why neighbor
joining correctly estimates trees rather than cluster-
ing the sequences. For simplicity, we will multiply
the neighbor joining criterion by n − 2 to get

(n − 2)d(i, j) −
∑

k 6=i

d(i, k) −
∑

k 6=j

d(j, k)

If we increase d(i, k) by 1.0 for all k then this crite-
rion for i, j changes by

(n − 2) − (n − 1) − 1 = −2

and the criterion for j, k changes by

0 − 1 − 1 = −2

which is this same, which shows that neighbor join-
ing is not affected by long branches if the distances
are correct. Now imagine that i is half gaps but
all other sequences are ungapped. Then i will con-
tribute less than other sequences to the out-distances
of other nodes. Again, increase all d(i, k) by 1.0.
Then our criterion for i, j changes by

(n − 2) · 1.0 − 1.0 · (n − 1) − 0.5 = −1.5

and our criterion for j, k changes by

0 − 0.5 − 0.5 = −1.0

so in this case, the i, j join is (incorrectly) preferred.

Thus, FastTree seems to be biased towards joins
that involve long-branched sequences if they have
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many gaps, or towards joins that involve short-
branched sequences if they have few gaps. We sus-
pect that this is the reason for the loss of accuracy of
FastTree relative to BIONJ on the large simulated
alignments, even though we detected no loss of ac-
curacy on smaller highly-gapped alignments.

Finally, gaps also complicate the interpretation
of the “variances” used for weighted joins. In princi-
ple, the variances should be divided by the number
of non-gap positions in the comparison, as distances
that are computed from more positions are more re-
liable. However, if we do that, the reduction formula
for variances given in the previous section becomes
unreliable (data not shown). Instead, we implicitly
weight less-gapped sequences more highly because
the less-gapped member of a join contributes more
strongly to the profile.

Top-hit Heuristics

FastTree searches within the top 2m hits of a seed se-
quence to estimate the top m hits for a “close neigh-
bor.” A close neighbor is defined as a sequence that
does not yet have a top-hits list and is one of the top
m hits of the seed. To ensure that these neighbors
are “close enough” so that the top-hits heuristic is
likely to be accurate, FastTree also requires that the
distance between the seed and the close neighbor be
at most 75% of the distance to the seed’s 2mth-best
hit. (Here we use actual distances, not the neigh-
bor joining criterion.) For ungapped sequences the
top-hit list is guaranteed to be correct if the neigh-
bor is less than half of the distance to the worst hit
considered, because of the triangle inequality. On
the other hand, for a perfectly balanced tree with
clock-like evolution, we expect the distance of hit m
to be proportionate to log2 m and the distance of
hit 2m to proportionate to 1 + log2 m. Thus, 75%
is an intermediate between a conservative value and
one that gives O(m) close neighbors per leaf under
ideal conditions. FastTree has an option (-close) to
change this parameter for faster performance.

FastTree also has a requirement that the close
neighbor have a similar pattern of gaps as the seed.
This is to avoid cases where the sequences overlap
in only a few positions, so that they might be iden-
tical or nearly so (for the positions considered) even
though they have very different top-hits lists. Specif-
ically, the requirement is that the total number of
non-gap positions in the seed/neighbor comparison
must be at least 1 − d/2 times the number of non-

gap positions in the neighbor, where d is the maxi-
mum distance allowed for a close neighbor, or at least
1− 2d/3 times the average shared positions between
the seed and its top 2m hits.

FastTree also has a heuristic to refresh the top-
hit lists when it has been “too long” since the last
refresh. (This is in addition to refreshing top-hits
lists that are too short.) To do this we store an
“age” for each node. The age is zero for the leaves
and for refreshed nodes. For each join, we set
age(ij) = 1 + max(age(i), age(j)). We refresh when
the age reaches log2 m, so that we expect to do a
refresh for every 1 out of m joins, or O(m) refreshes
overall.

Finally, given the top-hit heuristic as described
so far, the top-hit lists eliminate much of the node-
node comparisons, and a significant fraction of the
remaining work is in recomputing the out-distances
r(i). When the number of active nodes is high, a
single join has little effect on the total profile or on
the out-distances, so this work is not useful. We use
“stale” values of the out-distances to compute the
neighbor joining criterion as long as the number of
active nodes has changed by less than 2% since the
out-distance for that node was last computed. (The
choice of 2% is arbitrary.)

Distances between amino acids

The simplest estimate of the evolutionary distance
between two aligned sequences is the fraction of
non-gap positions that differ. Indeed, by default,
FastTree uses this metric for nucleotide alignments.
However, some substitutions are more likely than
others, and for protein sequences, accounting for this
leads to better estimates of evolutionary distance
and hence to more accurate trees (Table 2).

We set the distance between two amino acids to
be proportionate to the negative log of their sim-
ilarity. By default, FastTree uses the BLOSUM45
similarity matrix [23], but in principle, any similar-
ity matrix that is designed for distantly related se-
quences would be appropriate. We normalize the
distances between amino acids so that the expec-
tation of the distance for unrelated sequences is 1.
(More precisely, we compute the average of each row
or column in the distance matrix, weighted by the
frequency of the amino acids, and we divide each
entry by the harmonic mean of the row and column
averages.) Alternatively, you can specify your own
amino acid distance matrix.
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To compute the distance between two profile po-
sitions in O(a) instead of O(a2) time, we use the
eigen decomposition of the amino acid distance ma-
trix D. Rather than storing the profiles ~Pl(i), we

actually store rotated profiles ~Ql(i):

D = V −1ΛV

~Ql(i) = V −1 ~Pl(i)

D(~Pl(i), ~Pl(j)) =
∑

a,b

Pl(i, a)Pl(j, b)D(a, b)

= ~Pl(i)D ~Pl(j) = (V −1 ~Pl(i))Λ(V −1 ~Pl(j))

= ~Ql(i)Λ ~Ql(j) =
∑

a

Ql(i, a)Ql(j, a)Λa

This computation takes O(a) time but is still much
slower than computing the distance between two
characters, which takes only a matrix lookup. So,
we record which positions match a single character
(i.e., the frequency vector contains a single value of
1.0 and the other values are 0) and we avoid compar-
ing the frequency vectors if both positions are single
characters. This also gives significant memory sav-
ings because we do not need to store the profile for
that position (we can use the rotated vector for that
character instead).

Unique sequences

Large alignments often contain many sequences that
are exactly identical to each other [18]. FastTree uses
hashing to quickly identify redundant sequences,
constructs a tree for the unique subset of sequences,
and then creates multifurcating nodes, without sup-
port values, as parents of the redundant sequences.

Alignments

Data Sources

We obtained members of COG gene families [25]
and of Pfam [26] PF00005 from the fall 2007 re-
lease of the MicrobesOnline database [9]. In Mi-
crobesOnline, the sequences are aligned to the fam-
ily’s profile rather than by progressive alignment
– the COG alignments are from reverse position-
specific blast [30] and the PF00005 alignment is from
hmmalign [1]. As the profiles only include positions
that are present in many members of the family,

these alignments do not contain all positions from
the original sequences. The 16S rRNA alignment is
from greengenes [10,11] and is trimmed according to
the greengenes mask.

Simulated families

For simulations with 2,000 sequences, we used the
81 COG alignments that had over 2,000 distinct se-
quences. For simulations with 500 and 40 sequences
we also used COGs that exceeded the required size.
Given an actual family and alignment, we selected
the desired number of family members (at random
and after removing duplicate sequences) and we in-
ferred a phylogeny using traditional neighbor-joining
(quicktree). For the 40-sequence simulations we
computed distances with protdist from the phylip
package [14]; for the 2,000-sequence simulations we
used log-corrected distances with the BLOSUM45
matrix. The average total length of the tree was
29.6 substitutions per site for 40 sequences and 530.0
substitutions per site for 2,000 sequences.

From these realistic phylogenies, we simulated
protein sequence evolution with Rose [22], using an
insertion and deletion rate of 0.0005 (or 0 for un-
gapped simulations), the default settings (the PAM
matrix), and 16 categories of gamma-distributed
rates with a shape parameter of 0.5. We removed
positions from the alignment that were ≥ 90% gaps
(≥ 95% for simulations with 40 members). Note that
we used the true (simulated) alignment rather com-
puting an alignment from the simulated sequences.

Comparisons to Other Methods

Distances for Traditional Neighbor Joining

Our log-corrected distance uses the formula
−1.3 log(1 − d(i, j)), which is similar to but simpler
than scoredist’s [13] formula

−1.33 · log
s(i, j) − s0

s(i,i)+s(j,j)
2 − s0

where s(i, j) is the similarity score and s0 is the ex-
pected value of the similarity score for two random
non-homologous sequences. The two formulas for
log-corrected distances give similar results because
our distance measure on amino acids is defined so
that 1 − d(i, j) is approximately proportionate to
s(i, j)−s0 and because the denominator in the score-
dist formula is roughly constant. As in scoredist, we

14



also truncate our log-corrected distances to values
no greater than 3.0, and for sequences that do not
overlap because of gaps, we use this maximum dis-
tance.

We implemented our own log-corrected dis-
tances, rather than using the implementation of
scoredist in Belvu, because of Belvu’s excessive CPU
and memory requirements. However, in smaller sim-
ulations, BIONJ trees based on either log-corrected
distances or scoredist distances were equally accu-
rate (data not shown).

We computed maximum likelihood distances
with protdist 3.65 [14] and default settings (JTT
matrix, one category of rates). Because protdist oc-
casionally gives unreasonable values (e.g., distances
of -1 for non-overlapping sequences, or values as high
as 50 for distantly related sequences), we set a max-
imum distance of 3, and we replaced values below 0
with 3.

PhyML aLRT Support Values

To compute support values for a tree with PhyML
aLRT, we optimized the branch lengths and we used
the combined supports (option -3), which are a min-
imum of support values from the parametric test [19]
and from a non-parametric variant [24]. We used the
JTT model, no invariant sites, and no rate variation
across sites.

CPU time and memory

Performance was measured on a computer with 4
dual-core 2.6 GHz AMD Opteron processors and 32
GB of RAM. All programs used a single thread of
execution. Programs were downloaded from the au-
thors’ web sites or were compiled with gcc version
3.4.6 and the -O2 optimization setting. The versions
of software tested were FastTree 0.9, quicktree 1.1,
clearcut 1.0.8, PhyML aLRT 1.1 (64-bit executable),
a C implementation of BIONJ [31], and RAxML VI
version 1.0 [27]. For RAxML, which is another max-
imum likelihood method, we used the BIONJ tree as
a starting tree, and the fast hill-climbing option (-f
d). For best performance, PhyML and RAxML were
run with no variation of rates across sites. Neither
job finished: PhyML crashed on COG2814 after the
likelihood had nearly converged, and we are not sure
why the RAxML job stopped running.

The time to compute the distance matrix (in Ta-
ble 3) was measured by running FastTree with the

-makematrix option, so that it outputs a distance
matrix in phylip format rather than building a tree.
To save memory, it computes the distances between
all N2 pairs of sequences.

To estimate the performance of the distance ma-
trix methods on the larger families (in Table 3), we
extrapolated from COG2814 and we used the scal-
ing behavior of each algorithm. We assumed that
BIONJ scales as O(N3) time and O(N2) space and
that clearcut scales as O(N2 log N) time and O(N2)
space. The scaling of quicktree is cubic in time and
quadratic in space, but we scaled by the number
of distinct sequences, as quicktree includes an op-
timization to remove redundant sequences (as does
FastTree).
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Figures
Figure 1 - An overview of traditional neighbor joining and of FastTree.
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Figure 2 - Distribution of support values for simulated alignments of 40 protein sequences with gaps.

We compare the distribution of three different types of support values for correctly- and incorrectly-inferred
splits: (A) the traditional (global) bootstrap, with 100 replicates; (B) FastTree’s local bootstrap, with 100
replicates; and (C) FastTree’s probabilistic local support. The horizontal line shows the uniform distribution.
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Tables
Table 1 - Accuracy of various implementations of neighbor joining on simulated protein families with

2,000 sequences and realistic topologies.

We estimated topologies from 81 COG families [25] with over 2,000 members, we simulated gapped protein
sequences with Rose [22], and we removed alignment positions that were ≥ 90% gaps (see Methods for
details). We inferred trees with each method, using linear distances derived from the BLOSUM45 amino acid
similarity matrix. We also ran BIONJ and clearcut with log-corrected distances (also based on BLOSUM45),
BIONJ with maximum likelihood distances (from protdist [14]), and quicktree with %different distances.
We report the average topological accuracy of each method, with the most accurate methods listed first.
FastTree’s default settings are highlighted in italics.

Program Distances Search Joins Accuracy
BIONJ log-corrected exhaustive weighted 75.6%
BIONJ max. likelihood exhaustive weighted 75.5%
BIONJ linear exhaustive weighted 75.0%
quicktree linear exhaustive unweighted 72.5%
FastTree linear exhaustive weighted 71.0%
FastTree linear top-hit weighted 70.9%

FastTree linear top-hit unweighted 70.3%
clearcut log-corrected relaxed unweighted 68.4%
clearcut linear relaxed unweighted 67.8%
quicktree %different exhaustive unweighted 65.5%

Table 2 - Quality of trees on genuine protein families of 500 sequences.

For each of the 304 COG families [25] that have over 500 members in MicrobesOnline [8], we randomly
selected 500 distinct member sequences, we aligned them via their psi-blast profile [30], and we inferred
phylogenies with a variety of methods. To estimate the quality of each tree’s topology, we used the tree’s
log likelihood, as reported by PhyML [5] after optimizing branch lengths. To put these likelihoods on a
comparable scale, we use the value relative to the best log likelihood for that alignment. We report this
average loss in log likelihood for each method, with the best (least loss) methods listed first. We also show
if the method is significantly worse than FastTree with the top-hit heuristic (by a two-tailed t test). The
alignments ranged from 65 to 1,009 amino acids wide (mean 323) and contained 2-35% gaps (mean 10%).

Program Distances Search Joins ∆ log lik. P(t test)
FastTree linear BLOSUM45 top-hit weighted -113.1 –
BIONJ max. likelihood exhaustive weighted -114.3 1
BIONJ log BLOSUM45 exhaustive weighted -133.0 0.3
FastTree linear BLOSUM45 exhaustive weighted -143.4 9 · 10−14

quicktree log BLOSUM45 exhaustive unweighted -189.5 0.001
BIONJ linear BLOSUM45 exhaustive weighted -231.0 6 · 10−5

clearcut log BLOSUM45 hill-climbing unweighted -238.3 1 · 10−5

quicktree linear BLOSUM45 exhaustive unweighted -269.1 8 · 10−7

quicktree %different exhaustive unweighted -429.1 1 · 10−19

Table 3 - CPU time and memory usage for inferring trees for genuine families.

(A) We report the CPU time and memory usage for various methods on each of three alignments. “Distance
matrix” reports the time to compute the distances between all N2 pairs of sequences in the alignment and
the space required to store the N(N − 1)/2 distinct entries of the distance matrix. For BIONJ and clearcut,
which do not include the computation of the distance matrix, we added half the time that it takes to compute
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the distance matrix. (We use half because the pairs need not be computed both ways.) Values shown with
≈ are estimated from the requirements for COG2814 and the scaling behavior of the method (see Methods
for details). (B) For each alignment, we show the number of sequences, the number of distinct sequences,
the number of columns, and the fraction of positions that are gaps.

(A)
COG2814 PF00005 16S rRNA

Program Support Values hours GB hours GB hours GB
FastTree local 0.05 0.16 0.47 0.3 17.4 2.4
Distance Matrix – 0.05 0.13 0.71 2.8 49.9 46.5
clearcut none 0.06 0.22 ≈ 1.24 ≈ 5.5 ≈ 34.7 ≈ 54.9
quicktree none 0.24 0.16 ≈ 25 ≈ 3.5 ≈ 1, 620 ≈ 57.1
quicktree 100 bootstraps 63.5 0.71 ≈ 6, 488 ≈ 15.5 ≈ 428, 544 ≈ 253.6
BIONJ none 32.9 0.44 ≈ 4, 096 ≈ 10.9 ≈ 129, 950 ≈ 109.7
PhyML local (aLRT) >330 3.83 – – – –
RAxML none >165 0.70 – – – –

(B)
Alignment COG2814 PF00005 16S rRNA
Type protein protein nucleotide
#Sequences 10,610 52,927 167,547
#Distinct 8,362 39,092 158,022
#Columns 394 214 1,287
%Gaps 10.8% 15.2% 4.3%
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